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A new method of full-pro®le re®nement is developed on the basis of the

minimization of the derivatives of the pro®le difference curve. The use of the

derivatives instead of the absolute difference between the observed and

calculated pro®le intensities allows re®nement independently of the back-

ground. The procedure is tested on various powder diffraction data sets and is

shown to be fully functional. Besides having the capability of powder diffraction

structure analysis without modelling the background curve, the method is shown

to allow the derivation of structure parameters of even higher quality than those

obtained by Rietveld re®nement in the presence of systematic errors in the

model background function. The derivative difference minimization principles

may be used in many different areas of powder diffraction and beyond.

1. Introduction

The Rietveld (1969) method is widely applied as a standard

technique of structure re®nement from powder diffraction

data (Young, 1993; McCusker et al., 1999). Its evident

advantage is the possibility of using experimental data in

the initial form of a full powder diffraction pro®le. This

process, in turn, requires the modelling of all of the scat-

tering contributions to a powder pattern, including the

background. In simple cases, the background can be esti-

mated and subtracted from a powder pro®le (Sonneveld &

Visser, 1975; von der Linden et al., 1999; Fischer et al., 2000;

David & Sivia, 2001) or modelled by physically based func-

tions (Riello et al., 1995). However, as a rule, the background

line is very dif®cult to describe correctly, since it is a complex

sum of different components originating from the sample

itself, amorphous and semi-crystalline admixtures, the sample

holder and other sources. Therefore, in most cases, the back-

ground in Rietveld re®nement is accounted for by applying

empirical functions such as polynomial or Fourier series. Of

course, none of these empirical functions can provide an

adequate general description of the background line. The

only assumption that the empirical modelling is based on is

the background line being a smooth curve slowly changing

with diffraction angle. Thus the re®nement may be aimed

not at minimizing the absolute difference between the

experimental and calculated pro®les but at minimizing the

oscillations (or curvature) of the difference curve. In this

paper, a new approach to full-pro®le re®nement is

presented, based on the minimization of a reformulated

aim function; this method does not require background line

modelling. The approach is tested on both calculated and

experimental data.

2. Derivative difference method

As a measure of the difference curve oscillations, the absolute

values of its derivatives may be used. The corresponding

minimization function can be chosen as
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where Io and Ic are the experimental and calculated pro®le

intensities, � is the diffraction angle, w is the weight and the

sum is over the entire powder pro®le. Applying the Savitzky±

Golay (SG) formalism (Savitzky & Golay, 1964) for the

derivative calculation, we can write the minimization function

as
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where ckj are the SG coef®cients for the derivative of order k

with the pro®le convolution interval [ÿm, m], N is the number

of points in the pro®le and � is the pro®le difference (� = Io ÿ
Ic). The variable structure and pro®le parameters, vr, are

re®ned by solving the normal equations corresponding to the

minimum of (2),
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where �i is the variance in the experimental pro®le intensity

Ioi. The sum in (4) represents the squared variance in the SG

derivative of order k for the ith pro®le point. The standard

deviations of the re®ned parameters can be estimated from the

equation

si � �Aÿ1
ii MF=�N ÿ P� C��1=2; �5�

where Aÿ1
ii is the diagonal element in the inverted normal

matrix, N is the number of observations, P is the number of

re®ned parameters and C is the total number of constraints.

For a practical application, the set of k derivatives needs to

be restricted to a ®nite number. Test runs of the procedure

showed that the use of the ®rst and second derivatives

calculated applying the SG coef®cients for the second-degree

polynomial gave satisfactory results. When minimizing only

the ®rst-order derivative, the re®nement was less stable since,

presumably, the ®rst derivative has values close to zero in the

regions of the diffraction peak maxima, thus reducing the

contribution of these regions to the minimization function.

The SG coef®cients for the ®rst and second derivatives with

the convolution interval [ÿm, m] can be expressed as

c1
j �
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The results of the derivative difference minimization

(DDM) are dependent on the choice of the convolution

intervals for each pro®le data point. On the one hand, the

intervals should be narrow enough to provide an adequate

calculation of the derivatives. On the other hand, the intervals

should be wide enough to `feel' the long oscillations of the

difference curve. A derivative of the pro®le difference can,

alternatively, be considered as a difference in the derivatives

of the observed and the calculated pro®les. Since the SG

coef®cients are calculated from a polynomial ®tted to the

pro®le convolution interval, the optimal convolution interval

should be the maximal one that provides an adequate poly-

nomial ®tting of the observed pro®le. For simplicity, the

intervals can be chosen to be equal to the average FWHM of

the diffraction peaks. Preliminary tests of the procedure

showed that such a choice provided stable re®nement.

However, better results were achieved by applying ¯exible

convolution intervals for each pro®le point. The optimal

intervals can be assigned on the basis of the counting statistics.

The assignment procedure consists in ®nding the widest

interval for which the average deviation of the observed

pro®le intensities from the SG polynomial does not exceed

one standard deviation of the intensity at each point of the

convolution interval. This procedure generates narrow

convolution intervals for the powder pro®le regions with

intense well resolved diffraction peaks, and wide intervals for

the regions with small and/or overlapped peaks.

The reliability factor for DDM may be calculated analo-

gously to the conventional Rietveld re®nement as a normal-

ized sum of the squared derivative difference over the powder

pro®le. However, the value of such a reliability factor will be

dependent on the convolution interval choice. For instance,

for wider convolution intervals the R factor will be lower,

because the wider the intervals the smoother the derivative

curve. A more unbiased R factor can be calculated as
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The second summand in (7) characterizes the quality of the

SG smoothing of the observed pro®le. This term will increase

with increasing convolution interval, since with wider convo-

lution intervals the quality of the SG polynomial ®t is worse.

Such a composite R factor allows a partial compensation of the

RDDM dependence on the convolution interval choice.

3. Results and discussion

The DDM algorithm can be easily adjusted to any Rietveld

re®nement program. It was included in a modi®ed and

corrected version of BDWS-9006PC (Wiles & Young, 1981)

and tested on various data sets.

The ®rst tests were performed using a calculated powder

X-ray diffraction pro®le of Ag2[Pd(NH3)2(SO3)2] (Solovyov et

al., 1999). Numerous DDM runs starting from randomly

altered structure and pro®le parameters showed stable and

correct re®nement, equivalent by the convergence rate to the

least-squares Rietveld re®nement. The initial structure model

used for generating the test calculated pro®le was reproduced

by DDM completely up to the isotropic displacement para-

meters. Comparative Rietveld and DDM re®nements were

performed on a calculated powder X-ray diffraction pro®le

with simulated statistical noise and a polynomial background

of moderate curvature. The resultant structural parameters

are presented in Table 1. As seen, both Rietveld and DDM

procedures allowed reproduction of the test structure at a

similar accuracy, the highest bias being 0.007 AÊ for the SÐO3

distance.

For a severe test, the calculated pro®le with simulated noise

was added by a randomly oscillating highly curved back-

ground. DDM was again started from randomly altered

parameters (with 0.5±1.0 AÊ displacement of the atomic posi-
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tions) and demonstrated a stable convergence. The results are

illustrated in Fig. 1. The test structure model was reproduced

with less than 0.01 AÊ deviation in the interatomic distances.

The only notable bias from the test model was found in lower

(by �0.5±0.7 AÊ 2) isotropic displacement parameters, Biso. The

randomly curved background line was reproduced by the

difference curve in detail.

Further tests of the method were performed using experi-

mental data. The DDM procedure was applied to the

[Pd(NH3)4](C2O4) structure (Solovyov et al., 1996) in parallel

with the conventional least-squares Rietveld re®nement using

the same powder X-ray diffraction pattern. The results are

summarized in Tables 2±4 and the structure is shown in Fig. 2.

The ®nal agreement between the observed and calculated

powder pro®les obtained by applying the two methods is

demonstrated in Fig. 3. Both the DDM and the Rietveld

procedure gave satisfactory structure parameters. Moreover,

the DDM re®nement allowed the derivation of even better

structural geometric characteristics. A smaller imbalance in

the CÐO distances and OÐCÐC angles of the oxalate

molecule was obtained by DDM, and the CÐC distance was

much closer to that (1.54 AÊ ) usually determined for oxalates.

The problem with the Rietveld re®nement in this case was, in

particular, due to a local maximum of the background curve

between 25 and 35� 2�, which was not adequately modelled by

the polynomial background function applied. Since DDM is
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Table 1
Fractional atomic coordinates, isotropic displacement parameters (AÊ 2)
and selected interatomic distances (AÊ ) after Rietveld and DDM
re®nements of a calculated powder X-ray diffraction pro®le of the
Ag2[Pd(NH3)2(SO3)2] test structure.

x y z Biso Distances

Test structure model
Pd 0 0 0 0.26 PdÐN 2.078
Ag 0.43962 ÿ0.23405 0.14784 1.36 PdÐS 2.288
N ÿ0.09560 0.15653 0.14846 0.50 SÐO1 1.446
S 0.25150 0.26264 0.03578 0.24 SÐO2 1.497
O1 0.44339 0.17397 0.11612 0.27 SÐO3 1.478
O2 0.21362 0.46382 0.11336 0.27 AgÐO1 2.411
O3 0.25389 0.35499 ÿ0.09626 0.27 AgÐPd 3.296

Rietveld re®nement
Pd 0 0 0 0.29 (5) PdÐN 2.080 (6)
Ag 0.4397 (1) ÿ0.2340 (2) 0.14787 (7) 1.33 (4) PdÐS 2.290 (3)
N ÿ0.0959 (8) 0.1567 (8) 0.1485 (5) 0.5 (2) SÐO1 1.449 (5)
S 0.2518 (3) 0.2630 (5) 0.0359 (2) 0.19 (8) SÐO2 1.498 (6)
O1 0.4442 (8) 0.173 (1) 0.1156 (5) 0.4 (1) SÐO3 1.481 (7)
O2 0.2139 (7) 0.464 (1) 0.1139 (5) 0.4 (1) AgÐO1 2.406 (6)
O3 0.2532 (8) 0.354 (9) ÿ0.0968(6) 0.4 (1) AgÐPd 3.297 (1)

DDM re®nement
Pd 0 0 0 0.30 (7) PdÐN 2.079 (6)
Ag 0.4395 (1) ÿ0.2342 (2) 0.14782 (7) 1.34 (6) PdÐS 2.289 (3)
N ÿ0.0985 (8) 0.157 (1) 0.1471 (5) 0.7 (2) SÐO1 1.450 (5)
S 0.2512 (3) 0.2632 (5) 0.0353 (2) 0.17 (8) SÐO2 1.501 (6)
O1 0.4433 (7) 0.1721 (8) 0.1151 (5) 0.2 (1) SÐO3 1.485 (7)
O2 0.2132 (6) 0.464 (1) 0.1139 (5) 0.2 (1) AgÐO1 2.403 (5)
O3 0.2525 (7) 0.3555 (8) ÿ0.0978 (6) 0.2 (1) AgÐPd 3.296 (1)

Figure 1
The results of the DDM re®nement run on a test powder diffraction
pro®le with a randomly curved background line added. The test (1),
calculated (2), difference (3), difference ®rst derivative (4) and difference
second derivative (5) pro®les are shown at the initial stage (a) and after
15 cycles of DDM (b). The dark dashed line in (b) represents the curved
background line added.

Table 2
Experimental details.

Crystal data
Chemical formula [Pd(NH3)4](C2O4) (C5H6N)Al3F10

Crystal system Triclinic Monoclinic
Space group P�1 C2/m
a (AÊ ) 7.1218 (1) 8.2699 (3)
b (AÊ ) 7.0812 (1) 6.2014 (2)
c (AÊ ) 3.8030 (2) 10.508 (1)
� (�) 91.913 (7) 90
� (�) 98.651 (7) 103.40 (1)
 (�) 97.288 (5) 90
V (AÊ 3) 187.80 (3) 524.22 (75)
Z 1 2
Radiation type Cu K� Neutron
Wavelength (AÊ ) 1.5418 1.8857
Temperature (K) 293 293

Data collection
Data collection

method
�ÿ2� scan �ÿ2� scan

Increment in 2� (�) 0.02 0.05
2� range (�) 11±90 5±150

Re®nement
Re®nement on Inet Inet

Rwp 0.055 ±
Rexp 0.021 ±
RB 0.025 ±
RDDM 0.068 0.115
H-atom treatment H atoms constrained H atoms re®ned
Weighting scheme Based on measured

s.u. values
Based on measured

s.u. values
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independent of the background, it allowed structure para-

meters of better quality to be obtained.

The DDM re®nement was also tested on neutron diffraction

data of (C5H6N)Al3F10 (Fig. 4), whose structure solution was

performed in the framework of the `DuPont Powder Chal-

lenge' (Harlow et al., 1999). The problem with this structure

analysis was in the low quality of the powder diffraction data

(Fig. 5) as a result of strong anisotropic peak broadening and

complex background curvature. In the process of structure

determination, the background was approximated by an

enhanced variant of the algorithm described by Sonneveld &

Visser (1975). The Rietveld re®nement of the structure was
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Table 3
Fractional atomic coordinates and isotropic displacement parameters
(AÊ 2) for [Pd(NH3)4](C2O4).

x y z Biso

DDM re®nement
Pd 0 0 0 1.11 (3)
O1 0.4339 (6) 0.2535 (6) 0.538 (1) 1.8 (1)
O2 0.7256 (6) 0.4173 (6) 0.533 (1) 1.8 (1)
C 0.545 (1) 0.405 (1) 0.519 (2) 1.6 (2)
N1 0.2659 (7) ÿ0.0660 (7) ÿ0.058 (2) 1.8 (1)
N2 0.0786 (7) 0.2796 (7) ÿ0.101 (1) 1.7 (2)

Rietveld re®nement
Pd 0 0 0 0.91 (3)
O1 0.4380 (5) 0.2569 (5) 0.538 (1) 1.1 (1)
O2 0.7274 (5) 0.4181 (4) 0.530 (1) 1.3 (1)
C 0.5533 (9) 0.4040 (8) 0.527 (2) 1.3 (2)
N1 0.2685 (5) ÿ0.0651 (5) ÿ0.058 (1) 1.3 (1)
N2 0.0826 (5) 0.2815 (5) ÿ0.100 (1) 1.0 (1)

Table 4
Selected geometric parameters (AÊ , �) for [Pd(NH3)4](C2O4).

DDM re®nement
PdÐN1 2.049 (5) N1ÐPdÐN2 91.2 (2)
PdÐN2 2.053 (5) N1ÐPdÐN2ii 88.8 (2)
CÐCi 1.564 (11) O1ÐCÐO2 125.5 (6)
CÐO1 1.261 (8) O1ÐCÐCi 117.7 (6)
CÐO2 1.271 (8) O2ÐCÐCi 116.8 (6)

Rietveld re®nement
PdÐN1 2.064 (4) N1ÐPdÐN2 90.3 (1)
PdÐN2 2.070 (4) N1ÐPdÐN2ii 89.7 (1)
CÐCi 1.643 (9) O1ÐCÐO2 128.4 (6)
CÐO1 1.248 (7) O1ÐCÐCi 112.6 (5)
CÐO2 1.230 (7) O2ÐCÐCi 118.8 (5)

Symmetry codes: (i) 1 ÿ x; 1 ÿ y; 1 ÿ z; (ii) ÿx;ÿy;ÿz.

Figure 2
The [Pd(NH3)4](C2O4) structure.

Figure 3
The experimental (circles), calculated (solid line) and difference (bottom
curve) powder diffraction pro®les after (a) Rietveld and (b) DDM
re®nement of the [Pd(NH3)4](C2O4) structure.

Figure 4
The (C5H6N)Al3F10 structure.
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performed using the shifted Chebyshev background functions

and applying constraints on interatomic distances without

which the structure geometry was not satisfactory (Harlow et

al., 1999). With DDM, the structure was re®ned successfully

without constraints on interatomic distances (and without

background modelling, of course). The structure parameters

obtained by DDM are listed in Tables 2, 5 and 6. The differ-

ence curve of the ®nal DDM plot shown in Fig. 5 demonstrates

the complexity of the background line. As seen, even with

such low-quality diffraction data, DDM allowed a satisfactory

structure re®nement.

The possibility of full-pro®le re®nement independently of

the background curve allowed by DDM is especially vital for

semi-crystalline substances, such as polymers, organized

amphiphilic liquid crystals and block copolymers, mesos-

tructured materials etc., for which the amorphous phase

contribution to the background line is essential. A particular

problem with mesostructured materials is that they exhibit

diffraction peaks at very low angles, where the background is

especially complex and dif®cult to model (Fig. 6). In the ®rst

applications of the full-pro®le structure analysis of meso-

porous mesostructured materials using the continuous density

function method (Solovyov, Kirik et al., 2001a,b; Solovyov,

Fenelonov et al., 2001; Solovyov, Zaikovskii et al., 2002;

Solovyov, Shmakov et al., 2002; Solovyov et al., 2003), the

background line was subtracted from the powder pro®le by

the enhanced algorithm of Sonneveld & Visser (1975). This

approximation was rough, but a trial background modelling

with polynomials and other functions was absolutely unsatis-

factory because of its very sharp change and complexity in the

low-angle region. The use of DDM allows the solution of this

problem. A ®rst preliminary variant of DDM was applied in
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Table 5
Fractional atomic coordinates and isotropic displacement parameters
(AÊ 2) for (C5H6N)Al3F10 obtained by DDM².

Occupancy x y z Biso

Al1 1 0 0 0 0.3 (1)
Al2 1 ÿ0.086 (3) 1/2 0.089 (3) 0.5 (2)
F1 1 ÿ0.074 (1) 0.2012 (7) 0.092 (1) 1.4 (1)
F2 1 0.209 (1) 0 0.112 (2) 1.4 (1)
F3 1 ÿ0.010 (2) 1/2 0.282 (2) 1.5 (3)
F4 1 0.131 (2) 1/2 0.069 (2) 1.4 (1)
C1³ 1 ÿ0.152 (2) 0 0.471 (2) 3.1 (2)
C2³ 1 ÿ0.088 (2) 0 0.358 (2) 3.1 (2)
C3³ 1 ÿ0.075 (2) 0 0.608 (2) 3.1 (2)
H1§ 0.5 ÿ0.269 (5) 0.078 (4) 0.459 (5) 7.8 (8)
H2§ 0.5 ÿ0.141 (5) 0.078 (4) 0.300 (3) 7.8 (8)
H3 1 ÿ0.137 (5) 0 0.673 (3) 7.8 (8)

² Displacement parameters were constrained for chemically equivalent atoms. ³ The
N atom was included in the re®nement with an occupancy of 0.167 and its parameters
were constrained to match those of the C atoms. § Atoms H1 and H2 are randomly
displaced from the mirror plane.

Table 6
Selected geometric parameters (AÊ , �) for (C5H6N)Al3F10.

Al1ÐF1i 1.772 (8) F2ÐAl1ÐF1 92.5 (3)
Al1ÐF2 1.852 (13) F2ÐAl1ÐF1vi 87.6 (3)
Al2ÐF3 1.979 (36) F1iÐAl1ÐF1 89.5 (3)
Al2ÐF2ii 1.767 (29) F1iÐAl1ÐF1vi 90.58 (3)
Al2ÐF4iii 1.615 (37) F1iiiÐAl1ÐF3 86.1 (2)
Al2ÐF1iv 1.856 (5) F3ÐAl2ÐF1 88.8 (3)
Al2ÐF4 1.855 (32) F3ÐAl2ÐF2ii 87.0 (14)
C3ÐC2v 1.312 (23) F3ÐAl2ÐF4 91.7 (15)
C2ÐC1 1.408 (31) F2iiÐAl2ÐF1 92.7 (3)
C1ÐC3 1.433 (28) F4iiiÐAl2ÐF1 90.9 (3)
C2ÐH2i 0.821 (32) F4iiiÐAl2ÐF4 83.2 (15)
C1ÐH1 1.063 (41) C3vÐC2ÐC1 109.5 (16)
C3ÐH3 0.944 (45) C2ÐC1ÐC3 132.9 (19)

C1ÐC3ÐC2v 117.6 (18)

Symmetry codes: (i) x;ÿy; z; (ii) ÿ 1
2 � x; 1

2 � y; z; (iii) ÿx; y;ÿz; (iv) x; 1 ÿ y; z; (v)
ÿx; y; 1 ÿ z; (vi) ÿx;ÿy;ÿz.

Figure 6
The experimental (top), calculated (middle solid) and difference (middle
dashed) small-angle synchrotron X-ray diffraction pro®les of CMK-1
mesostructured carbon material after DDM structure re®nement. The
two bottom curves are the ®rst and second derivatives of the difference
pro®le. The insert shows a fragment of TEM image.

Figure 5
The experimental (top), calculated (bottom) and difference (middle grey)
neutron powder diffraction pro®les after the DDM re®nement of the
(C5H6N)Al3F10 structure.
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the full-pro®le X-ray diffraction structure analysis of a series

of new silica mesoporous mesostructured materials (Kleitz et

al., 2003) and ordered nanopipe mesostructured carbons

(Solovyov, Kim et al., 2004). DDM allowed stable background-

independent full-pro®le re®nement of the structure para-

meters of these advanced nanomaterials, a result that was

unattainable by any other method. To date, DDM has been

applied to full-pro®le X-ray diffraction analysis of many

different mesostructures, including a series of ordered silica

mesoporous materials with either a three-dimensional cubic or

a two-dimensional hexagonal lattice (Kleitz et al., 2004) and

mesostructured nanoframework carbons (Solovyov, Parmen-

tier et al., 2004).

In Fig. 6, a small-angle synchrotron X-ray diffraction pro®le

of a mesostructured nanoframework carbon CMK-1 (Ryoo et

al., 1999; Parmentier et al., 2002; Solovyov, Parmentier et al.,

2004) is compared with the calculated pro®le after DDM

structure re®nement. The material presents an ordered three-

dimensional array of interwoven gyroidal carbon nanoframe-

works formed within the pores of the silica MCM-48 (Monnier

et al., 1993) mesoporous template. The nanoframeworks are

displaced with respect to one another after the silica wall

dissolution, with a lowering of the initial material symmetry

(Ia3d) inherited from the MCM-48 template, as shown by

transmission electron microscopy (TEM) and X-ray diffrac-

tion (Kaneda et al., 2002; Solovyov, Zaikovskii et al., 2002).

The DDM structure re®nement performed utilizing the model

density function developed for gyroidal mesostructures

(Solovyov, Zaikovskii et al., 2002) allowed the determination

of the nanoframework thickness and displacement parameters

for a series of CMK-1 carbons prepared using the chemical

vapour deposition (Parmentier et al., 2002) and liquid-phase

in®ltration methods (Ryoo et al., 1999). Comprehensive

comparative X-ray and TEM analysis of these materials

revealed important correlations between the structure para-

meters and the synthesis procedures applied.

Besides the studies described above, the DDM procedure

has also been tested on many other data sets and has

demonstrated stable and correct full-pro®le re®nement.

Potential applications of DDM are not restricted to powder

diffraction structure re®nement only. Background-indepen-

dent pro®le treatment can be especially desirable in quanti-

tative phase analysis when amorphous admixtures must be

accounted for. Future extensions of DDM may involve

Bayesian probability theory, which has been utilized ef®ciently

in background estimation procedures (von der Linden et al.,

1999; Fischer et al., 2000; David & Sivia, 2001) and Rietveld

re®nement in the presence of impurities (David, 2001). DDM

will also be useful at the initial steps of powder diffraction

structure determination when the structure model is absent

and the background line cannot be de®ned correctly. The

direct space search methods of structure solution, such as

simulated annealing (Solovyov & Kirik, 1993) and others, may

ef®ciently utilize background-independent DDM. Moreover,

DDM can be applicable in many other data treatment

procedures where sharp peaks and slowly oscillating back-

ground need to be separated.

4. Conclusions

The derivative difference minimization method of full-pro®le

re®nement developed in this work is shown to be a very

powerful and ef®cient tool of powder diffraction structure

analysis. The most attractive advantage of DDM is the possi-

bility of pro®le re®nement without background line modelling.

Moreover, when properly applied, this method may allow the

derivation of structure parameters with even higher quality

than can be obtained by Rietveld re®nement in the presence

of systematic errors in the model background function. The

principles of DDM are universal and may be used in many

different areas of powder diffraction and beyond. Future

developments will be focused on studying the properties of

this procedure and its ef®ciency in applications to data of a

different nature. Different options for calculating the deriva-

tive difference minimization function and various re®nement

strategies should be subjected to methodical analysis.
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